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A B S T R A C T   

Remotely-sensed data can inform conservation efforts that target forest wildlife, however, few spatial data 
products are able to quantify fine-scale aspects of structural variation within forests. Increased availability of 
Light Detection and Ranging (LiDAR) datasets that cover broad spatial extents and ownership types (e.g., entire 
states) provide useful information regarding canopy and understory structure within forested landscapes. The 
fusion of LiDAR data with field-based species surveys can advance our understanding of species-habitat re-
lationships and improve the effectiveness of conservation programs to recover habitat-limited species. The 
Golden-winged Warbler (Vermivora chrysoptera) is a forest-dependent songbird that nests in structurally-complex 
young forest across eastern North America. As with many early-successional obligates, this species has been 
declining for decades due, in part, to the steady loss of young forest/shrubland nesting habitat. Although con-
servation programs have begun restoring Golden-winged Warbler habitat, these efforts are currently limited by 
the inability to identify existing habitat across large spatial extents and diverse ownership patterns. Recent 
availability of state-wide LiDAR data for Pennsylvania provides an opportunity to overcome this limitation. From 
2019 to 20, we surveyed for Golden-winged Warblers and structural vegetation at 837 sites across six forest 
blocks in eastern Pennsylvania. We combined these data with LiDAR derived forest structural metrics to develop 
statistical models to predict patterns of occupancy. Golden-winged Warbler occupancy probability was explained 
by models containing several LiDAR-derived structural metrics (e.g., percentage of first returns between 1 and 5 
m in height, structural complexity, etc.). Moreover, models fit with LiDAR-derived covariates predicted occu-
pancy much better than those using only field-measured vegetation covariates (ΔAICc = 53.27). Mapped pre-
dictions of Golden-winged Warbler occupancy revealed potential habitat (especially regenerating timber 
harvests) on both private and public lands. These results demonstrate the efficacy of LiDAR for modeling forest 
bird habitat associations, and how such data sources can provide a valuable tool for conservation planning.   

1. Introduction 

Over the past several decades, wildlife conservation efforts have 
increasingly used remotely sensed data to quantify ecological features 
(Pettorelli et al. 2014, Rose et al. 2015, Stephenson 2019) and to identify 
and prioritize conservation actions (Abarca et al. 2022). While many 
such efforts have relied heavily on coarse-scale data products like the 

United States National Land Cover Database (NLCD; Jin et al. 2019) and 
Cropland Data Layer (CDL; USDA 2021), these have been widely 
acknowledged as limited in their capacity to explain ecological phe-
nomenon that operate at finer scales (e.g., < 30 m) or within cover types 
not accurately represented therein (Wardlow and Egbert 2003, Cun-
ningham 2006). With that in mind, one possible solution to overcome 
many of the challenges associated with traditional land cover rasters is 
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Light Detection and Ranging (LiDAR) data (Buján et al. 2012, Yan et al. 
2015). LiDAR data are three-dimensional representations of the physical 
world created by estimating return distances between a pulsed laser 
transmitted from and received by an airplane (in the case of aerial 
LiDAR; Verma et al. 2006). One major advantage of LiDAR data in as-
sessments of wildlife habitat is that they can be used to describe struc-
tural attributes of habitat (e.g., variation in vegetation height) that 
cannot be quantified by other remotely sensed data (Atkins et al. 2018, 
Wilkes et al. 2018). Further, although fine-scale remotely sensed data 
exist for some public lands, comparable data for private lands are 
generally unavailable if they exist at all (Litvaitis et al. 2021). The 
increased availability of LiDAR data collected across large geographic 
extents provides valuable information about the amount and spatial 
contexts of wildlife habitat even in landscapes dominated by private 
lands. 

One conservation-reliant species for which LiDAR may help inform 
the spatial distribution of habitat is the Golden-winged Warbler (Ver-
mivora chrysoptera; Confer et al. 2020). The Golden-winged Warbler is a 
Nearctic-Neotropical migratory songbird that breeds across forest- 
dominated portions of eastern North America and winters in Central- 
and South America (Confer et al. 2020). Over much of the past century, 
populations of this songbird have declined at a rate of 1.85% per year 
(Hill and Hagan 1991, Sauer et al. 2020). Consequently, the species is 
listed as ‘near threatened’ by the International Union for the Conser-
vation of Nature (IUCN), as ‘threatened’ by the Committee on the Status 
of Endangered Wildlife in Canada (OSEWIC 2006), and is currently 
being considered for listing under the U.S. Endangered Species Act 
(USFWS 2011). Although the drivers behind the Golden-winged War-
bler’s decline are varied, one of the most important appears to be the loss 
of high-quality nesting habitat (Roth et al. 2019, Confer et al. 2020). 
Indeed, the species nests almost exclusively in early successional woody 
communities (e.g., young forest and reverting old fields, woody wet-
lands; McNeil et al. 2017, Confer et al. 2020), and, across much of the 
species’ breeding range, the availability of these community types has 
dwindled (King and Schlossberg 2014). 

To stem the decline of Golden-winged Warbler populations, a set of 
habitat best management practices were developed for the species 
(Bakermans et al. 2011, Roth et al. 2019), which have subsequently been 
implemented by several states and provinces to restore Golden-winged 
Warbler nesting habitat. For example, extensive work has been done 
on public lands in places like Pennsylvania, USA to create habitat for the 
species through silviculture (McNeil et al. 2018, Fiss et al. 2021). 
Perhaps the largest concerted effort aimed at creating Golden-winged 
Warbler nesting habitat has been NRCS’s ‘Working Lands for Wildlife’ 
(WLFW) initiative. This federal cost-share program provides technical 
and financial assistance to facilitate the implementation of conservation 
practices on private lands in the central and southern Appalachian 
Mountains, which has yielded > 9,400 ha of habitat since the program’s 
inception in 2012 (Litvaitis et al. 2021). A recent study monitored 
hundreds of sites enrolled in WLFW and similar efforts on public lands 
and found that site occupancy by Golden-winged Warblers was largely 
driven by landscape and regional context such as amount and type of 
forest (deciduous, mixed, evergreen) in surrounding landscapes and 
proximity to existing breeding populations (McNeil et al. 2020). This 
study subsequently laid the groundwork for NRCS to develop Priority 
Areas for Conservation (PACs) within which to prioritize the allocation 
of technical and financial assistance funds across the WLFW geography 
(Lott et al 2021). 

Although remotely sensed data like the NLCD and CDL provide an 
excellent resource for assessing the amount of forest and forest types, 
they are relatively incapable of discerning Golden-winged Warbler 
nesting habitat (i.e., young forest) from mature forest that does not 
support nesting Golden-winged Warblers (Jin et al. 2019, Confer et al. 
2020, USDA 2021) as they lack the fine grain size necessary for habitat 
characterization. As such, conservation planners implementing Golden- 
winged Warbler best management practices can leverage traditional 

data products like NLCD to ascertain broad landscapes where conserva-
tion work may be successful (Roth et al. 2019, McNeil et al. 2020) but 
remain challenged if they wish to assess the presence and spatial dis-
tribution of existing nesting habitat from remotely sensed data sources 
(Webb et al. 2014). This uncertainty hampers the conservation efforts of 
groups like NRCS because they cannot evaluate whether sites are near 
potential Golden-winged warbler source populations (McNeil et al. 
2020) or the amount of existing habitat within local landscapes 
(Bakermans et al. 2015b). Although, on public lands, ground-based 
vegetation surveys can be manually conducted and used to assess 
whether a forest stand is suitable for Golden-winged Warblers (McNeil 
et al. 2018), it is often impossible to do this on private lands and such 
site-level data are usually not mappable over broad spatial extents (e.g., 
beyond a small focal area of sampling plots). 

Given the challenges associated with identifying and quantifying 
early successional habitat from traditional remotely sensed data sources 
(e.g., McNeil et al. 2020) and field surveys (e.g., McNeil et al. 2018), we 
used recently acquired statewide LiDAR data for Pennsylvania (flown 
2017–19 for our study area) to model occupancy probability of territo-
rial Golden-winged Warblers across large spatial extents comprised of 
diverse ownership types. We also compared Golden-winged Warbler 
occupancy models fit with LiDAR-derived covariates to those fit using 
vegetation data collected in the field. Finally, we extrapolate our results 
across the NRCS’s Golden-winged Warbler PACs. Specifically, our ob-
jectives were: 1. assess the degree to which LiDAR-based metrics are 
associated with Golden-winged Warbler occupancy, 2. assess whether 
Golden-winged Warbler occupancy was better predicted by field vege-
tation data or LiDAR metrics, and 3. predict potential Golden-winged 
Warbler habitat across a demographically important portion of the 
species’ Appalachian range. We discuss these results in the context of 
forest bird conservation and the implementation of broad-scale habitat 
management efforts. 

2. Methods 

2.1. Study regions and forest blocks 

Central to our study was the development of an occupancy model for 
Golden-winged Warblers in the Central Appalachian Mountains, with a 
focus on the Pocono Mountain region of Pennsylvania (Pike and Monroe 
Counties). We selected this region because it supports what is likely the 
densest population of Golden-winged Warblers in the Appalachian re-
gion (Fink et al. 2021) while many formerly-occupied portions of 
Pennsylvania are now largely vacant of the species (McNeil et al. 2020, 
Lott et al. 2021). By focusing our sampling within the Poconos region, 
we were able to identify the structural parameters that most accurately 
describe the habitat characteristics of Golden-winged Warblers without 
the inclusion of broad landscapes where the species is absent (McNeil 
et al. 2020). 

Within the Pocono Mountains, we sampled Golden-winged Warblers 
within six ‘forest blocks’. These forest blocks consisted of large tracts 
(1,118 – 4,690 ha) of public land where forest management was being 
implemented to benefit forest birds like the Golden-winged Warbler: 
State Game Lands 116, State Game Lands 180, State Game Lands 183, 
State Game Lands 209, State Game Lands 316, and Delaware State Forest 
(Fig. 1). The region overall is characterized by moderate elevation and 
thin, acidic soils that are poor for agriculture purposes (White & Chance 
1882, Oplinger and Halma 2006). As a result, the region remains largely 
forested, though there exist scattered farms and developed areas 
(McCaskill et al. 2009). Canopy trees across the region were varied but 
among the most abundant were oaks (Quercus spp.), red maple (Acer 
rubrum), hickories (Carya spp.), eastern hemlock (Tsuga canadensis), and 
pines (Pinus spp.; Wherry et al. 1979). Understory woody plants were 
also varied but mountain laurel (Kalmia latifolia), black huckleberry 
(Gaylussacia baccata), and blueberries (Vaccinium spp.) were among the 
most common (Wherry et al. 1979). 
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2.2. Golden-winged Warbler surveys 

Survey locations were placed using a stratified systematic sampling 
scheme across the six forest blocks. More specifically, locations were 
placed in grids or transects (whichever maximized the number of survey 
locations) in each available cover type while always ensuring that each 
point was > 250 m from the nearest neighboring points. Our goal was to 
place points in each forest block such that cover types were represented 
relative to their prevalence in each block while remaining spatially in-
dependent. We focused on the following cover types for sampling: up-
land forest 0–6 years post-harvest, upland forest 7–20 years post- 
harvest, upland forest 21–40 years post-harvest, upland forest 41–80 
years post-harvest, upland forest 81–120 years post-harvest, upland 
forest > 120 years post-harvest, shrub wetland, and hardwood swamp. 
We used shapefiles designed and provided by the Pennsylvania Bureau 
of Forestry (PA-DCNR) and the Pennsylvania Game Commission in 
ArcGIS v 10.1 (ESRI 2011) to map cover types within each of the six 
forest blocks. These cover type shapefiles included spatially explicit 
polygon data on forest type and age class depicted by two-dimensional 
“footprints” of each cover type, developed and maintained current by 
the respective state agencies (PA-DCNR and PGC). Next we created a 
variable number of points within each cover type, attempting to balance 
cover type availability with the number of sampling points. Each point 
was a minimum of 250 m apart to avoid double-counting individual 
birds on multiple survey locations (Ralph et al. 1995). We also made 
sure that points were > 100 m from the nearest ecotone between two 
cover types. For some narrow or oddly-shaped stands within a particular 
block, it was impossible to place points > 100 m from an edge; in this 
case, a point was placed in the center of the stand (sensu McNeil et al. 
2018, 2020). 

We surveyed for Golden-winged Warblers using standard avian point 
count surveys (Ralph et al. 1995). Briefly, these surveys involved a 
single observer standing at a survey point for 10 min silently recording 
the presence of Golden-winged Warblers detected by sight and sound. 

We conducted all surveys between 30 min pre-sunrise and 4 h post- 
sunrise. For each Golden-winged Warbler we detected, we noted the 
sex and estimated distance to the observer (to the nearest 5 m). For birds 
identified by song but not visually detected during the survey, we 
visually confirmed the phenotype after the survey was complete because 
Golden-winged Warblers can sing the songs of Blue-winged Warblers 
(V. cyanoptera), as can hybrids (Ficken and Ficken 1967). Golden- 
winged and Blue-winged Warblers hybridize and engage in interspe-
cific competition when they occur in sympatry (Confer et al. 2020), thus 
highlighting the importance of accurate identification of the species 
from congeners. With that in mind, hybrids 

and Blue-winged Warblers are rare across this study area, even 
within early successional habitats (hybrids: 3% naïve occupancy, Blue- 
winged Warblers: 7% naïve occupancy; McNeil et al. 2020). Prior to 
each survey, we also recorded survey metadata including Beaufort wind 
index (wind), time since sunrise (minutes), ordinal date, and cloud cover 
(percent, rounded to the nearest 25%; McNeil et al. 2018). Each survey 
location was visited twice per breeding season between 15 May and 15 
June 2019–20. 

2.3. Within-stand vegetation surveys 

We quantified structural vegetation around each point count location 
using a sampling procedure where data were collected at the point 
location itself and at the ends of each of two randomly-selected transects 
(35 m in length) oriented at 0◦, 120◦, or 240◦. This protocol yielded 
vegetation three sampling locations at each point count location: 1. plot 
center, 2. the first transect, and 3. the second transect. At each of the 
three locations, we conducted a 1 m2 percent cover plot where we 
visually estimated the percent cover of the following vegetation strata: 
leaf litter, bare ground, moss, coarse woody debris, grass, herbaceous, 
fern, brambles (e.g., Rubus spp.), and woody. We considered “leaf litter” 
to be any dead leaves and plant parts < 10 cm in diameter. Coarse 
woody debris was any woody plant part > 10 cm in diameter (McNeil 

Fig. 1. Locations across Pike and Monroe Counties, Pennsylvania where we conducted point count surveys (yellow circles) within six forest blocks. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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et al. 2017). We considered “herbaceous” plants to be any mono-
cotyledon (e.g., grasses, sedges, and rushes) or herbaceous dicotyledon. 
Ferns were any seedless vascular plant. Our “woody” category included 
any sapling or shrub except Rubus which was its own category because of 
its high importance to Golden-winged Warbler ecology (Roth et al. 
2019, Confer et al. 2020). 

To quantify basal area, we employed the point-quarter method of 
sampling (Cottam and Curtis 1956) at each of the aforementioned three 
survey locations. Briefly, we measured the distances to the nearest tree 
(>10 cm diameter at breast height; DBH) using a tape measure in each of 
four quadrats (0-90◦ [NE], 91-180◦ [SE], 181-270◦ [SW], and 271-359◦

[NW]). If no tree was within 15 m of the point in a given quadrat, we 
recorded that datum as “N/A”. Distance data were converted into basal 
area (m2/ha) following the procedure described by Cottam and Curtis 
(1956). The last type of data we collected at each point location was the 
shrub/sapling stem density within two 1x10m plots. The two plots were 
each placed at one random location (0–10 m, 10–20 m or 20–30 m) 
along the two 35-m transects described above. Within each woody stem 
plot, we tallied the total number of woody stems (<10 cm in DBH) in 
each of two categories: short (<1.5 m) and tall (≥1.5 m tall). 

2.4. LiDAR dataset and processing 

LiDAR metrics used in this study were derived from previous work 
creating 10 × 10 m forest attribute rasters across most of the state of 
Pennsylvania (see Fisher et al., in review) using LiDAR datasets freely 
available from the USGS National Map. LiDAR datasets used to create 
these metrics were collected over multiple campaigns between spring 
2015 and spring 2020 with the intent of targeting leaf-off conditions. 
LiDAR data for the Poconos region, where the occupancy model was 
trained, were collected during one campaign that occurred between 
March and November of 2019 (specifically “PA Northcentral B5 2019”). 
LiDAR metrics were calculated using the lidR package in R (Roussel et al. 
2020), with all LiDAR return heights normalized based on a triangulated 
irregular network (TIN) algorithm to construct the digital terrain model 
from ground returns. 

Normalized LiDAR point clouds can be distilled into a host of metrics 
aimed at quantifying both vertical and horizontal vegetation structural 
attributes (Hardiman et al., 2018). Here we targeted metrics we sus-
pected are important to bird habitat, while also providing a broad 
overview of the total structure of the forest, including the upper canopy 
as well as the low to mid story and adjacent variability (e.g., rugosity 30 
and 50 m, discussed below). In total, we selected 11 metrics, focusing on 
those that both had (1) little/no obvious data artifacts (i.e., pronounced 
striping across the study area) and (2) sufficient variation that they 
would make useful predictors. Ultimately, we modeled Golden-winged 
Warbler occupancy using the following 11 metrics: 1. interquartile 
range (“IQR”), 2. height below which 75% of returns were recorded 
(“p75”), 3. height below which 90% of returns were recorded (“p90”; 
LaRue et al., 2022), 4. percent of all returns between 1 and 5 m, 5. 
percent of first returns between 1 and 5 m, 6. standard deviation of mean 
outer canopy height (MOCH) values at 30 m spatial resolution (e.g., 
standard deviation of nine 10x10 m pixel values; Atkins et al., 2018), 7. 
standard deviation of p95 height values at 30 m spatial resolution, 8. 
standard deviation of p99 height values at 30 m spatial resolution, and 
(9, 10, 11) the same three metrics summarized in (6,7,8) but using a 50 
m spatial resolution (e.g., standard deviation of 25 10x10 m pixel 
values) (Roussel et al. 2020). For simplification, metrics 6–11 are 
referred to as [metric rugosity resolution] throughout the remainder of 
the paper. In the context of this study, rugosity can be interpreted as a 
metric of surface heterogeneity (Hardiman et al., 2018). 

2.5. Occupancy analyses 

We used single-season occupancy models to assess ecological re-
lationships between Golden-winged Warbler observations (only 

detections within 100 m of point counts) and LiDAR/vegetation data 
(MacKenzie et al. 2017) using the unmarked package in R (Fiske and 
Chandler 2011). To assess all occupancy models, we used the Informa-
tion Theoretic approach (Burnham and Anderson 2002) and model se-
lection with Akaike’s Information Criterion adjusted for small sample 
size (AICc; Akaike 1973). Briefly, we considered models < 2.0 ΔAICc to 
be competing and model β parameter 95% confidence intervals that 
overlapped zero to be weak biological effects (Arnold 2010). Addition-
ally, because we did not know the ideal scale at which to extract LiDAR 
data around our point count survey locations, we extracted mean LiDAR 
variables around each point from buffers of the following radii: 50 m, 
100 m, 250 m, and 500 m. We used LiDAR data from these four levels of 
spatial extent to assess which was most predictive in the first stage of our 
occupancy analysis (describe below). 

Prior to extracting LiDAR data for occupancy modeling, we masked 
our LiDAR rasters to exclude cover types that nesting Golden-winged 
Warblers are not known to use (Confer et al. 2020). We also masked 
non-habitat from our final predictive maps. This binary mask was done 
to avoid incorporating non-habitat cover types into the occupancy 
model and to avoid predicting occupancy to non-habitat cover types. 
Moreover, our model was trained using data from six forest blocks in 
heavily forested landscapes. For this reason, it would be inappropriate 
for us to predict into cover types beyond the scope of our study (e.g., 
grasslands, urban, etc.). A composite 2020 land cover raster was 
extracted for our study area from Google’s ‘Dynamic World’ land cover 
product (Brown et al. 2022). The Dynamic World product is a 10-m 
spatial resolution global land cover map that contains nine possible 
land cover categories: open water (0), trees (1), grass (2), flooded 
vegetation (3), crops (4), shrub/scrub (5), built/urban (6), barren (7), 
and snow/ice (8; Brown et al. 2022). We considered ‘trees’, ‘shrub/ 
scrub’, and ‘flooded vegetation’ to be possible habitat types for Golden- 
winged Warblers and all else to be non-habitat. Thus, to create our bi-
nary mask, we converted classes 1, 3, and 4 to “1′′ and all others to “N/ 
A”. We then multiplied each cell in the Dynamic World mask raster by 
each cell in our LiDAR layers to mask out non-habitat cover types. For 
each LiDAR metric, we then calculated the mean value within each of 
our buffer distances (50 m, 100 m, 250 m, and 500 m) using the focal 
function in the raster package (Hijmans and van Etten 2012) in R. 
Finally, we extracted values for all LiDAR metrics at each point count 
location for each of the four spatial extents using the raster package’s 
extract function. 

We began our occupancy analyses by testing single-covariate 
detection models for each of our survey covariates (e.g., p(time of 
day),ψ(.) or p(cloud cover), ψ(.)). Specifically, we examined the 
following survey covariates: time of day, cloud cover, ordinal date, and 
Beaufort wind index. This model set also included an intercept-only 
‘null’ model for comparison (p(.), ψ(.)) We limited our detection 
models to one detection covariate to avoid overparameterizing our 
models as they would only become more complex, later in the analysis 
(MacKenzie et al. 2017). After finding the best-ranked detection model, 
we incorporated any detection terms into all subsequent models. Next, 
we created a model set for each LiDAR metric; each of these single- 
metric model sets included single-covariate models for the metric at 
each of the four spatial scales (e.g., p(best), ψ(IQR 50 m), p(best), ψ(IQR 
100 m), etc.). We also created quadratic versions of each of these 
models, for a total of eight models in each of these sets. The result of 
these analyses was the best-ranked spatial scale and polynomial struc-
ture (linear/quadratic) for each variable which was carried below into 
the additive model selection. When a linear and quadratic model were 
both in the competing set (<2.0 ΔAICc), we defaulted to the linear 
structure as doing so would adhere to the rules of parsimony (Burnham 
and Anderson 2002). We constructed all possible combinations of 
covariates such that no covariates within the same model were corre-
lated (|r| > 0.70; Sokal and Rohlf 1969). We followed a similar pro-
cedure to construct all possible subsets of 0–3 vegetation covariates in 
our vegetation occupancy model sets. 

D.J. McNeil et al.                                                                                                                                                                                                                               



Forest Ecology and Management 540 (2023) 121002

5

We predicted our top-ranked LiDAR occupancy model across a series 
of management units established by NRCS’s Golden-winged Warbler 
Conservation Initiative: “Priority Areas for Conservation” (PACs; Lott 
et al. 2021). Predictions were done using the plogis() function in base R 
and the model’s β parameter estimates (R Core Team 2021). In Penn-
sylvania, there are six PACs (Fig. A1): 1. Pennsylvania Wilds and Ridge- 
and-valley Region, 2. Allegheny Plateau, 3. Central Appalachian Region, 
4. Eastern Ridge-and-valley Region, 5. High Pocono Plateau, and 6. Low 
Pocono Plateau. Prior to mapping our occupancy predictions across 
these regions, we stratified each to only include landscapes that were 
similar to those upon which we trained our occupancy model: > 75% 
forest/shrubland/wetland within 1 km of each location (Roth et al. 
2019). We thus generated a focal statistics map generated by calculating 
the percent of these cover types within 1 km of each location across 
these PACs and excluded landscapes with values < 75%. Through this 
procedure, PAC #2 (Allegheny Plateau) had < 5% of the area available 
for prediction so we did not predict within this PAC (Fig. A1). 

To assess the goodness-of-fit and discrimination ability of our top- 
ranked occupancy model, we calculated a) Briers Score and b) Area 
Under the Curve (receiver operating characteristic; AUC) respectively 
using 10-fold cross validation. The model structure was initially fit with 
the full dataset and then tested by iteratively fitting this model structure 
using 75% of the data and testing with the remaining 25% with AUC and 
Brier Scores each averaged over 10 runs. Additionally, we obtained 
coordinates for an independent dataset of 158 point locations where 
Golden-winged Warbler presence was confirmed through NRCS moni-
toring of WLFW points in the two years prior to our own sampling 
(2017–18; McNeil et al. 2020). We extracted our occupancy predictions 
at these points and calculated the proportion of points for which occu-
pancy was estimated to be ψ̂ > 0.50. 

3. Results 

From 2019 to 20, we conducted 1,674 point count surveys across 649 
survey locations (n = 837 point × year combinations) over the six forest 
blocks and Golden-winged Warblers were detected at 69 locations 
(naïve occupancy probability = 0.08). The 837 samples occurred in DSF 
(n = 87), SGL180 (n = 106), SGL209 (n = 202), SGL116 (n = 154), 

SGL183 (n = 112) and SGL316 (n = 176). Across all survey locations, 
basal area varied from 0 – 142.4 m2/ha (mean: 31.8 m2/ha; Table 1). 
Other variables we measured also exhibited wide ranges of variation, for 
example, leaf litter cover: range = 0 – 94% (mean: 50.2%), herbaceous 
cover: range = 0 – 98.3% (mean: 6.9%), and < 1.5 m tall woody stem 
density: range = 0 – 173 stems/m2 (mean: 15.6; Table 1). When we 
extracted LiDAR metrics for each point count location, we also observed 
substantial variation among points; for example, IQR at a 100 m radius 
varied from 0.17 to 14.95 m with a mean value of 9.29 m. Likewise, the 
percentage of first returns within 1–5 m in height varied from 0.25 to 
39.01% (mean: 4.77%). See Table 1 for summaries of each LiDAR metric 
at the 100 m radius scale. 

Detection probability was best explained by Beaufort wind index 
with no competing models; we used this survey covariate in all following 
occupancy models. When we tested each LiDAR metric to determine 
which spatial scale (50 m, 100 m, 250 m, or 500 m radius) and shape 
(linear vs quadratic) was most predictive, we found these varied among 
LiDAR metrics (Table 2, Table A1). Among the 11 metrics, seven were 
best predicted at the 100 m scale. Those that deviated from this pattern 
included percent of all returns 1–5 m and percent of first returns 1–5 m 
which were best predicted at the 250 m and 500 m (quadratic) scales, 
respectively (Table 2). Additionally, two measures of MOCH rugosity – 
30 m and 50 m – best explained occupancy at the 500 m and 50 m scales, 
respectively. With that in mind, there was. 

substantial uncertainty as to which LiDAR metrics best predicted 
occupancy (especially rugosity generated from MOCH) given that many 
were correlated and within competing models. 

After excluding models that contained correlated variables, we 
created 151 additive LiDAR models with up to three covariates. Among 
them, there were six models in the competing candidate set (Table 3). 
The competing models all had percent of first returns 1–5 m (quadratic). 
Additionally, all models had a metric of p95 rugosity (either 30 m or 50 
m aggregation; Table 3). Finally, all models also included one of the 
three measures of vegetation height (IQR, p75, or p90). With these 
competing models in mind, we used the top-ranked model for all model 
predictions explored hereafter: p(wind), ψ(p75 + percent of first returns 
1–5 m2 + p95 rugosity 30 m); see Table 3. This model predicted a 
negative relationship between Golden-winged Warbler occupancy 
probability and the height at which 75% of LiDAR returns occurred 
(p75; Fig. 2). The relationship between site occupancy and percent of 
first returns 1–5 m was a quadratic relationship peaking around 12% 
(Fig. 2). The relationship between occupancy and p95 rugosity exhibited 
the greatest magnitude of effect whereas sites with p95 rugosity values 

Table 1 
Summary statistics for LiDAR metrics and field-measured vegetation metrics 
used as covariates in our Golden-winged Warbler occupancy analyses. Shown for 
each variable are the minimum value, maximum value, mean, and standard 
error (SE).  

LiDAR Metrics (Remotely sensed) 
Variable name Minimum Maximum Mean SE 

Inter-quartile Range (IQR) 0.17 14.95  9.29  0.09 
p75 0.17 17.83  9.62  0.09 
p90 1.18 20.28  11.88  0.10 
Percent of Returns 1–5 m 0.81 27.80  5.33  0.13 
Percent of First Returns 1–5 m 0.25 39.01  4.77  0.16 
MOCH Rugosity 30 m 0.26 4.34  1.48  0.02 
p95 Rugosity 30 m 0.62 6.05  1.42  0.03 
p99 Rugosity 30 m 0.56 6.52  1.38  0.03 
MOCH Rugosity 50 m 0.38 4.99  1.68  0.02 
p95 Rugosity 50 m 0.73 6.69  1.70  0.03 
p99 Rugosity 50 m 0.68 6.99  1.65  0.03 
Vegetation Metrics (Field-measured) 
Basal area (m2/ha) 0.00 32.69  7.31  0.15 
Leaf litter cover (%) 0.00 94.00  50.24  0.72 
Bare ground cover (%) 0.00 54.33  4.94  0.25 
Moss cover (%) 0.00 84.00  6.26  0.32 
Coarse woody debris cover (%) 0.00 4.00  0.39  0.02 
Forb cover (%) 0.00 98.33  6.90  0.43 
Fern cover (%) 0.00 97.33  11.01  0.53 
Rubus cover (%) 0.00 36.67  0.35  0.08 
Woody cover (%) 0.00 90.00  20.20  0.60 
Short woody stems (count/20 m2) 0 173  15.65  0.74 
Tall woody stems (count/20 m2) 0 43  3.22  0.19  

Table 2 
Most predictive spatial scales for each of the 11 LiDAR metrics considered in this 
study. Each scale represents a radius (m) around each point count survey loca-
tion. Variables were modeled as either linear (e.g., 100 m) or quadratic (e.g., 100 
m2) and scales (50 m, 100 m, 250 m, or 500 m) were assessed using the infor-
mation theoretic approach. Competing models (ΔAICc < 2.0) are listed under 
“Competing spatial scales”. When a linear and quadratic model were both 
competing at the same spatial scale, we defaulted to the linear structure.  

LiDAR Metric Best 
scale 

Competing spatial scales 

Inter-quartile Range (IQR) 100 m 100 m2 

p75 100 m 100 m2 

p90 100 m – 
Percent of Returns 1–5 m 250 m – 
Percent of First Returns 

1–5 m 
500 m2 – 

MOCH Rugosity 30 m 500 m 50 m, 250 m, 250 m2, 500 m2 

p95 Rugosity 30 m 100 m 50 m, 100 m2 

p99 Rugosity 30 m 100 m 100 m2 

MOCH Rugosity 50 m 50 m 50 m2, 100 m, 250 m, 250 m2, 500 m, 
500 m2 

p95 Rugosity 50 m 100 m 50 m, 100 m2 

p99 Rugosity 50 m 100 m 100 m2  
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near one indicated a probability of occupancy ~ 0.0, while sites with 
p95 rugosity values > 6 were very likely to be occupied (ψ̂ > 0.90; 
Fig. 2). In the top-ranked model (as well as all competing models), none 
of the 95% confidence intervals for the β parameter overlapped zero. 

The top model also performed well (mean Brier Score = 0.07, mean 
AUC = 0.83) and predicted that 72% of 2017–18 test Golden-winged 
Warbler locations (n = 158) had ψ̂ > 0.50 (i.e., were predicted to be 
Golden-winged Warbler habitat). When the threshold was dropped to ψ̂ 
> 0.40, the model predicted 82% of the test locations. 

None of the field-measured vegetation variables from point count 
locations were correlated (|r| > 0.70) and, thus, we ranked all possible 
combinations of 1–3 covariates in addition to the null model (232 
models; Table 4). As with the final LiDAR candidate set, our field 
vegetation models exhibited uncertainty as to which model best pre-
dicted occupancy as there were four competing models. Several vari-
ables were present in three of these four models: % leaf litter cover, % 
herbaceous cover, basal area2, and # >1.5 m tall woody stems (Table 4). 
The top-ranked model, p(wind), ψ(%leaf litter + %herbaceous + #tall 
woody stems) suggested that occupancy probability was negatively 
related to percent leaf litter and positively associated with both percent 
herbaceous cover and the number of > 1.5 m tall woody stems (Fig. 2), 
though the β parameter 95% confidence interval on herbaceous cover 
overlapped zero. None of the other β parameter 95% confidence in-
tervals for competing models overlapped zero. Still, this vegetation 
model was much better than a null model (Table 4). When we compared 
AICc values for our top vegetation model and our top LiDAR model, the 
top LiDAR model (AICc = 508.33) performed much better than our top 
vegetation model (AICc = 561.60; ΔAICc = 53.27). 

Predicted occupancy probability from our LiDAR model mapped 
across the six forest blocks in the Poconos indicated that 5% of the land 
area had an occupancy probability ≥ 0.50. When we predicted this 
model across the five PACs of interest, we found that mean occupancy, 
within appropriate landscapes, varied by PAC with PAC # 4 (Eastern 
Ridge-and-Valley Region) hosting the greatest percentage of area being 

Table 3 
Golden-winged Warbler occupancy models fit using LiDAR (Light Detection and 
Ranging) data covariates. The detection portion of the model is not shown. 
Shown are the ten top-ranked models and the null (intercept-only on occupancy) 
for reference. For each model, we report the number of model parameters (k), 
Akaike’s Information Criterion adjusted for small sample size (AICc), ΔAICc, 
cumulative model weight (CumWt.), and Log Likelihood (LL).  

Model name k AICc ΔAICc CumWt. LL 

ψ (p75 + %first1-5 m2 +

p95Rug30m) 
7  508.33  0.00  0.20  − 247.10 

ψ (p75 + %first1-5 m2 +

p95Rug50m) 
7  508.39  0.06  0.40  − 247.13 

ψ (p90 + %first1-5 m2 +

p95Rug30m) 
7  509.08  0.75  0.54  − 247.47 

ψ (p90 + %first1-5 m2 +

p95Rug50m) 
7  509.64  1.31  0.65  − 247.75 

ψ (IQR + %first1-5 m2 +

p95Rug30m) 
7  509.80  1.46  0.74  − 247.83 

ψ (IQR + %first1-5 m2 +

p95Rug50m) 
7  509.82  1.49  0.84  − 247.84 

ψ (%first1-5 m2 + p95Rug50m) 6  512.09  3.76  0.87  − 249.99 
ψ (%first1-5 m2 + p95Rug30m) 6  512.67  4.33  0.89  − 250.28 
ψ (%first1-5 m2 +

MOCHRug50m +
p95Rug30m) 

7  513.09  4.76  0.91  − 249.48 

ψ (p75 + %first1-5 m2 +

MOCHRug50m) 
7  513.33  5.00  0.93  − 249.60 

ψ (.) 3  626.21  117.87  1.00  − 310.09  

Fig. 2. Functional relationships between Golden-winged Warbler occupancy probability and habitat metrics derived from LiDAR (top row) and field-measured 
vegetation metrics (bottom row). Relationships plotted are derived from our best-ranked LiDAR and vegetation models, respectively. Solid lines represent func-
tional relationships while dashed lines represent 95% confidence intervals. 
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potential habitat (5%) and PAC # 6 (Low Pocono Plateau) hosting the 
lowest percentage of area being potential habitat (3%; Fig. A2, 
Table A2). When we examined locations predicted to have high occu-
pancy probability across the study area, it was readily apparent that, on 
public lands, many locations predicted to be potential Golden-winged 
Warbler habitat were known sites that had experienced recent over-
story removal timber harvests (Figs. 3-4). Moreover, while public lands 
timber harvests were obvious and could be clearly compared to public 
data on timber management, private lands that had apparently experi-
enced timber management were also predicted to have high occupancy 

probability (Fig. 3). 

4. Discussion 

Assessing the ecological needs and presence of available habitat for 
species of conservation concern is a persistent challenge for conserva-
tion practitioners, especially for wildlife species dependent upon 
ephemeral habitats such as early successional forest (Askins 2001, King 
and Schlossberg 2014, Litvaitis et al. 2021). While LiDAR data have been 
used in the past to examine forest bird habitat relationships (Goetz et al. 
2007, Lesak et al. 2011), few studies have compared the value of LiDAR 
to field-measured habitat data. Not only did models specified with 
LiDAR metrics out-perform a null (intercept-only) model, they also 
described ecological relationships between occupancy and vegetation 
structure that are supported by published literature on the life history of 
Golden-winged Warblers (Confer et al. 2020). For example, the negative 
relationship between Golden-winged Warbler occupancy probability 
and p75 is reasonable for a species dependent upon early-successional 
communities (Roth et al. 2019); indeed, as canopy height increases, so 
will p75 (the height below which 75% of LiDAR returns are recorded). 
Similarly, the percent of first returns within 1–5 m being positively 
associated with occupancy (albeit quadratic) is also sensible as vegeta-
tion within the 1–5 m band harbors shrubs and saplings that Golden- 
winged Warblers require for foraging and post-fledging habitat (Bel-
lush et al. 2016, Fiss et al. 2021). For this result, specifically, the 
quadratic relationship indicates an optimal percent of returns within 
1–5 m (around 13%), beyond which, occupancy probability declines 
(though we had relatively few data points beyond 13%; Fig. 2). Finally, 
the relationship between occupancy and rugosity is consistent with the 
notion that Golden-winged Warblers require structural complexity 
within nesting habitat (Bakermans et al. 2015a, Wood et al. 2016, 
Leuenberger et al. 2017, Aldinger 2018). Ultimately, that the LiDAR 
patterns revealed by our top occupancy model are consistent with what 
is known about Golden-winged Warbler habitat, is confirmation that 
LiDAR-derived variables hold strong promise for predicting occupancy 

Table 4 
Golden-winged Warbler occupancy models fit using field-measured vegetation 
data covariates. Shown are the ten top-ranked models and the null (intercept- 
only on occupancy) for reference. For each model, we report the number of 
model parameters (k), Akaike’s Information Criterion adjusted for small sample 
size (AICc), ΔAICc, cumulative model weight (CumWt.), and Log Likelihood (LL).  

Model name k AICc ΔAICc CumWt. LL 

ψ (%leaf litter + %forbs + #tall 
woody stems) 

6  561.60  0.00  0.21  − 274.75 

ψ (basal area2 + %forbs + #tall 
woody stems) 

7  562.00  0.40  0.39  − 273.93 

ψ (basal area2 + %leaf litter +
#tall woody stems) 

7  562.81  1.21  0.50  − 274.34 

ψ (basal area2 + %leaf litter) 6  563.29  1.69  0.59  − 275.60 
ψ (basal area2 + %leaf litter + % 

forbs) 
7  564.10  2.50  0.65  − 274.98 

ψ (%leaf litter + %CWD2 + #tall 
woody stems) 

7  564.17  2.57  0.71  − 275.02 

ψ (%leaf litter + %Rubus + #tall 
woody stems) 

6  565.00  3.39  0.75  − 276.45 

ψ (%leaf litter + #tall woody 
stems) 

5  565.29  3.69  0.78  − 277.61 

ψ (basal area2 + %leaf litter + % 
CWD2) 

8  565.33  3.73  0.82  − 274.58 

ψ (%leaf litter + % woody + #tall 
woody stems) 

6  566.18  4.57  0.84  − 277.09 

ψ (.) 3  626.21  64.60  1.00  − 310.09  

Fig. 3. A predictive map of Golden-winged Warbler occupancy probability (ψ̂ ) across two of Pennsylvania’s NRCS Priority Areas for Conservation (PACs; left). Close 
examination of areas of high predicted occupancy (upper right) coincide with timber harvest on public lands (blue polygons). Nearby private lands (e.g., white 
dashed lines) also depict presumed timber harvests that are also apparent from aerial imagery (lower right). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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for this species, and when possible, should be incorporated into habitat 
assessments for the species in future work (Goetz et al. 2007, Tattoni 
et al. 2012, Davies and Asner 2014). 

Not only did models fit with LiDAR variables describe ecologically 
meaningful habitat relationships but they also out-performed models 
specified using field-measured vegetation data. Studies on Golden- 
winged Warbler habitat have long relied upon field data on vegetation 
characteristics as a ‘gold standard’ for habitat quantification (e.g., 
Confer and Knapp 1981, Klaus and Buehler 2001, Confer et al. 2003, 
Terhune et al. 2016, Buckardt-Thomas et al. in press). Our analyses are 
the first to demonstrate that LiDAR metrics can outperform field- 
measured vegetation data for quantifying Golden-winged Warbler 
habitat. The superiority of LiDAR is important for several of reasons; 
first, vegetation data derived from field data simply cannot be collected 
at all locations over broad areas (Chojnacky 2000, Tattoni et al. 2012, 
Campbell et al. 2018). Moreover, as our analyses demonstrate, LiDAR 
data provide information about habitat that would be otherwise difficult 
to obtain from field-measured vegetation data (Bradbury et al. 2005). In 
fact, is possible that the differences in predictive value we observed 
between the value of field-measured vegetation and LiDAR are partially 
driven by scale differences: Field measured vegetation sampling 
occurred < 50 m from each survey location while the LiDAR metrics in 
our top model were quantified from 100 to 250 m. Beyond the feasibility 
of such efforts remains also the subjectivity of field-measured vegetation 
data which are often impacted by individual observer biases and intro-
duce additional uncertainty into their use in ecological modeling 
(Morrison 2016). However, LiDAR data generally do not provide in-
formation on plant species composition which is of key importance to 
many imperiled bird species like the Kirtland’s Warbler (Setophaga kir-
tlandii; Bocetti et al. 2020), Cerulean Warbler (S. cerulea; Buehler et al. 
2020) and Golden-winged Warblers (Bellush et al. 2016, McNeil et al. 
2020). When data on plant species composition are required, it is likely 
that a “hybrid” study design would be appropriate where LiDAR data are 
paired with field data. 

In addition to being informative from an ecological perspective, 
predictive maps like those produced here can also serve as valuable tools 
for conservation (Garabedian et al. 2017, Moudrý et al. 2021). Despite 
great interest in understanding declines seen in many early-successional 
wildlife populations, remotely sensed data products of land cover 

change based on timeseries of optical imagery have not proven useful for 
quantifying the complex structure of early-successional forest commu-
nities (Olsen et al. 1999, Xian et al. 2013). Our top-ranked occupancy 
model used LiDAR data to accurately delineate attributes indicative of 
early-successional communities upon which Golden-winged Warblers 
rely (Fig. 3). Mapping occupancy predictions, as we have done here, is 
useful for conservation because such maps can inform where a species is 
most likely to occur within a particular region (De Wan et al. 2009, 
Webb et al. 2014). This information may be helpful for conservation 
planning (e.g., ranking of proposed locations for conservation efforts) 
because some shrubland bird species (including Golden-winged War-
blers) are most likely to occur near aggregations of conspecifics (Roth 
et al. 2014, McNeil et al. 2020). Thus, it is possible that management 
efforts targeted near existing patches of habitat where the species may 
already be present could improve the efficacy of conservation efforts 
(Lott et al. 2021, Litvaitis et al. 2021). Alternatively, knowing where 
habitat is sparse provides information regarding landscapes where 
habitat is needed to achieve landscape-level thresholds of habitat 
availability (Watling et al. 2020). With this said, the value of LiDAR for 
mapping early-successional habitat is somewhat dependent upon regu-
lar re-collection of LiDAR across a study area due to the ephemeral 
nature of these communities (Askins 2001). 

While the Golden-winged Warbler was the focal species in this study, 
it seems likely that LiDAR could inform management for other eastern 
forest bird species of conservation concern. In fact, previous work on 
more common forest bird species like the Black-throated Blue Warbler 
(S. caerulescens; Goetz et al. 2010) has already demonstrated the value of 
LiDAR for predicting habitat for other forest bird taxa. Many species of 
forest birds of conservation concern are declining due to a lack of 
important forest structural attributes (McShea and Rappole 2000, Parker 
et al. 2020, Rushing et al. 2020). To this end, LiDAR is superior to many 
other traditional remotely sensed data sources with information about 
forests like NLCD (Jin et al. 2019), CDL (USDA 2021), and the U.S. 
Forest Service’s Forest Inventory and Analysis forest cover rasters 
(Chojnacky 2000) because LiDAR provides detailed information about 
forest structures that are important for wildlife (Tattoni et al. 2012, 
Vogeler et al. 2013, Dickinson et al. 2014). Cerulean Warblers, for 
example, breed within stands of mature, deciduous trees accompanied 
by small gaps in the canopy layer (Buehler et al. 2020). The Wood 

Fig. 4. Normalized vegetation height profile along a 10-m wide × 150-m long transect (above) from an area of high predicted occupancy probability (ψ̂ ; below) to 
low predicted occupancy from Monroe County, Pennsylvania. A vertical bar is shown where occupancy probability ψ̂ = 0.50. 
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Thrush (Hylocichla mustelina), another species of increasing conserva-
tion concern, nests in closed-canopy forest accompanied by a well- 
developed understory (Evans et al. 2020). It seems likely that the con-
servation of these species, as well as other eastern forest birds of con-
servation concern (e.g., Eastern Whip-poor-will [Antrostomus vociferus], 
Louisiana Waterthrush [Parkesia motacilla], etc.) would benefit from the 
use of LiDAR data (Bradbury et al. 2005, Coops et al. 2021). Analyses of 
forest structure may indicate that bird species like Cerulean Warbler and 
Wood Thrush have plenty of mature forest habitat, however, as we 
demonstrate here, LiDAR can help refine estimates of habitat availability 
by incorporating aspects of forest structure, previously elusive to macro- 
ecologists. Beyond single-species studies, LiDAR has already proved 
useful in a community context (Goetz et al. 2007, Lesak et al. 2011), and 
may be valuable for understanding whole suites of declining birds (e.g., 
shrubland species), potentially fit using community occupancy models 
(Kéry and Royle 2015). 

4.1. Conclusion. 

Although our analyses here provide a powerful demonstration of the 
value of LiDAR data to specify models that identify habitat for Golden- 
winged Warblers, there are several important caveats that should be 
kept in mind. For example, although we found a negative relationship 
between p75 (the height below which 75% of LiDAR returns occur) and 
occupancy probability, Golden-winged Warblers actually prefer saplings 
that are somewhat more advanced in size as they contribute to the 
structural complexity of habitat patches (Bakermans et al. 2015a, 
2015b, McNeil et al. 2020); studies focused on young forest (rather than 
a wide suite of forest structure) would likely find a threshold below 
which occupancy also declines. Moreover, it is also important to keep in 
mind that Golden-winged Warblers may exhibit different ecological 
patterns in different parts of their distribution (e.g., Streby et al. 2016, 
Fiss et al. 2021). For example, Golden-winged Warbler fledglings 
commonly used mature forest in the Great Lakes (Streby et al. 2016) 
while those in the Appalachian Mountains often stayed within early- 
successional habitats (Fiss et al. 2021). Finally, the LiDAR data here 
were collected during ‘leaf-off’ conditions; assessments that use LiDAR 
data collected during ‘leaf-on’ conditions would likely find different 
patterns, including data artifacts driven by reduced ground/low-strata 
returns and more canopy returns (Atkins et al., 2018). Likewise, 
exploration of the vast potential of alternative LiDAR forest structure 
metrics may provide improved predictability and insights beyond the 
narrow subset presented in this study. With these caveats in mind, our 
study also serves as a springboard for additional work. One project that 
seems like a natural extension beyond the analyses here would be using 
LiDAR to assist with the classification of different forest management 
regimes (e.g., shelterwoods or overstory removals; Wood et al. 2013, 
Dickinson et al. 2014, Roth et al. 2019). Ideally, such an effort would 
yield maps that depict forest, classified into relevant treatment types 
(Coops et al. 2021). Another area of research that is still in its infancy is 
using LiDAR data to describe habitat selection patterns (rather than 
simply occurrence) for forest-dependent wildlife (Ciuti et al., 2018). 
Ultimately, our results provide clear justification for the continued 
production of publicly available LiDAR products (in Pennsylvania and 
beyond) for use in wildlife conservation research. 
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